

Physical & Mechanical Properties

		KANTHAL APM™	KANTHAL® A-1	KANTHAL A	KANTHAL AF	KANTHAL AE	KANTHAL D
Max continuous operating temp. (element temperature in air)	°C (°F)	1425 (2600)	1400 (2550)	1350 (2460)	1300 (2370)	1300 (2370)	1300 (2370)
Nominal composition (See Note), %	Cr Al Fe Ni	22 5.8 balance	22 5.8 balance	22 5.3 balance	22 5.3 balance	22 5.3 balance	22 4.8 balance
Density ρ	g/cm³ (lb/in³)	7.10 (0.256)	7.10 (0.256)	7.15 (0.258)	7.15 (0.258)	7.15 (0.258)	7.25 (0.262)
Resistivity at 20°C at 68°F	Ω mm ² /m (Ω /cmf)	1.45 (872)	1.45 (872)	1.39 (836)	1.39 (836)	1.39 (836)	1.35 (812)
Temperature factor of the resistiv	rity, Ct						
250°C (480°F) 500°C (930°F) 800°C (1470°F) 1000°C (1830°F)		1.00 1.01 1.03 1.04	1.00 1.01 1.03 1.04	1.01 1.03 1.05 1.06	1.01 1.03 1.05 1.06	1.01 1.03 1.05 1.06	1.01 1.03 1.06 1.07
1200°C (2190°F)		1.05	1.04	1.06	1.06	1.06	1.08
Linear thermal expansion coefficie	ent a. × 10-6/K						
20-100°C (68-210°F) 20-250°C (68-480°F) 20-500°C (68-930°F) 20-750°C (68-1380°F)	,	- 11 12 14	- 11 12 14	- 11 12 14	- 11 12 14	- 11 12 14	- 11 12 14
20-1000°C (68-1840°F)		15	15	15	15	15	15
Thermal conductivity λ at 50°C at 122°F	W/m K (Btu in/ft2 h ° l	11 -)(76)	11 (76)	11 (76)	11 (76)	11 (76)	11 (76)
Specific heat capacity at 20°C at 68°F	kJ/kg K (Btu/lb°F)	0.46 (0.110)	0.46 (0.110)	0.46 (0.110)	0.46 (0.110)	0.46 (0.110)	0.46 (0.110)
Melting point (approx.)	°C (°F)	1500 (2730)	1500 (2730)	1500 (2730)	1500 (2730)	1500 (2730)	1500 (2730)
Mechanical properties* (approx.)							
Tensile strength	N/mm² (psi)	(98600°°)	680 (98600)	725 (105200)	700 (101500)	720 (104400)	670 (97200)
Yield point	N/mm² (psi)	470** (68200**)	545 (79000)	550 (79800)	500 (72500)	520 (74500)	485 (70300)
Hardness	Hv	230	240	230	230	230	230
Elongation at rupture	%	20**	20	22	23	20	22
Tensile strength at 900°C at 1650°F	N/mm² (psi)	40 (5800)	34 (4900)	34 (4900)	37 (5400)	34 (4900)	34 (4900)
Creep strength*** at 800°C at 1470°F at 1000°C at 1830°F at 1100°C	N/mm² (psi) N/mm² (psi) N/mm²	8.2 (1190) - -	1.2 (170) 0.5 (70)	1.2 (170) 0.5 (70)	- - - 0.7	1.2 (170) - -	1.2 (170) 0.5 (70)
at 2010°F at 1200°C at 2190°F	(psi) N/mm² (psi)	- -	- -	- -	(100) 0.3 (40)	- -	- -
Magnetic properties		1)	1)	1)	1)	1)	1)
Emissivity, fully oxidized condition	n	0.70	0.70	0.70	0.70	0.70	0.70

Note: Composition listed is nominal. Actual composition may vary to meet standard electrical resistance and dimensional tolerances.

^{*} The values given apply for sizes of approx. 1.0 mm diameter [0.039 in]

** 4.0 mm [0.157 in] Thinner gauges have higher strength and hardness values while the corresponding values are lower for thicker gauge

*** Calculated from observed elongation in a Kanthal standard furnace test. 1% elongation after 1000 hours

**** Composition listed is nominal. Actual composition may vary to meet standard electrical resistance and dimensional tolerances.

ALKROTHAL®	NIKROTHAL®	NIKROTHAL TE	NIKROTHAL 70	NIKROTHAL 60	NIKROTHAL 40	NIKROTHAL 20	NIFETHAL™ 70	NIFETHAL 52
1100	1200	1200	1250	1150	1100	1050	600	600
(2010)	(2190)	(2190)	(2280)	(2100)	(2010)	(1920)	(1110)	(1110)
15	20	22	30	16	20	24	-	-
4.3 balance	_	9	_	- balance	– balance	– balance	- balance	- balance
-	80	balance	70	60	35	20	72	52
7.28	8.30	8.10	8.10	8.20	7.90	7.80	8.45	8.20
(0.263)	(0.300)	(0.293)	(0.293)	(0.296)	(0.285)	(0.281)	(0.305)	(0.296)
1.25	1.09	1.19	1.18	1.11	1.04	0.95	0.20	0.376
[744]	(655)	(716)	(709)	(888)	(626)	(572)	(120)	(220)
	4.00		4.00		4.00	4.40	0.40	4.00
1.02 1.05	1.02 1.05	1.04 1.06	1.02 1.05	1.04 1.08	1.08 1.15	1.12 1.21	2.19	1.93 2.77
1.10	1.04	1.06	1.03	1.10	1.21	1.28	3.66	2.//
1.11	1.05	1.07	1.05	1.11	1.23	1.32	_	_
-	1.07	1.07	1.06	-	-	-	_	_
-	_	-	-	-	_	-	-	10
11	15	14	14	16	16	16	_	-
12	16	15	15	17	17	17	13	-
14 15	17 18	16 17	16 17	18 18	18 19	18 19	- 15	-
16	15	14	14	14	13	13	17	17
(110)	(104)	(97)	(97)	(97)	(90)	(90)	(120)	(120)
0.46	0.46	0.46	0.46	0.46	0.50	0.50	0.52	0.52
(0.110)	(0.110)	(0.110)	(0.110)	(0.110)	(0.119)	(0.119)	(0.120)	(0.120)
1500	1400	1380	1380	1390	1390	1380	1430	1435
(2730)	(2550)	(2515)	(2515)	(2535)	(2535)	(2515)	(2610)	(2620)
630	810	800	820	730	675	675	640	610
(91400)	(117500)	(116000)	(118900)	(105900)	(97900)	(97500)	(92800)	(88500)
455	420	390	430	370	340	335	340	340
(66000)	(60900)	(56600)	(62400)	(53700)	(49300)	(48600)	(49300)	(49300)
220	180	190	185	180	180	160	_	-
22	30	30	30	35	35	30	_	30
30	100	-	120	100	120	120	-	-
(4300)	(14500)	-	(17400)	(14500)	(17400)	(17400)	_	-
1.2	15	15	_	15	20	20	_	_
(170)	(2160)	(2160)	_	(2160)	(2900)	(2900)	_	_
1	4	4	_	4	4	4	_	_
(140)	(560)	(560)	_	(560)	(560)	(560)	_	_
-	_	_	-	_	_	_	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
	-	-	-	_	-	-	-	-
1)	2)	2)	2)	3)	2)	2)	4)	5)
0.70	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88

¹⁾ Magnetic (Curie point approx. 600°C (1100°F)) 2) Non-magnetic 3) Süghtly magnetic 4) Magnetic up to 610°C (1130°F) (Curie point) 5) Magnetic up to 530°C (990°F) (Curie point) 6) ± 10%